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Abstract

Two-thirds of the world population faces severe water stress at least once per month

in a year. The rapidly growing population exacerbates freshwater scarcity. Addition-

ally, climate change, pollution, and bio-energy demands amplify the water demand

problem. Since a large percentage of freshwater withdrawals are for agricultural ir-

rigation, increasing water-use efficiency in irrigation becomes extremely important.

Closed-loop irrigation is one of the precision irrigation techniques which has the po-

tential to improve water-use efficiency than the traditional approaches. Due to the

large-scale features of agricultural fields and significant uncertainty, there are sig-

nificant challenges associated with closed-loop irrigation including sensor placement,

data assimilation, and controller design. This thesis addresses some of the major

challenges of applying closed-loop irrigation in the actual fields by proposing novel

methods.

Due to the availability of a limited number of sensors, in a typical agricultural

field, it is essential to know the minimum number of sensors and optimal location

of the sensors to estimate the field’s soil moisture. A systematic approach has been

developed to find the minimum number and best location of the sensors using ob-

servability and degree of observability analysis. The structure-preserving graph-based

approach is used to reduce the order of a large-scale system model. In some irrigation

implementing systems, the irrigation amount is non-uniform in spatial directions.

In these scenarios, one reduced model for the whole time may not capture all the

dynamics of a large-scale field or may increment the order of the resulting reduced

model. Dynamic model reduction is proposed to handle these scenarios, where dif-

ferent reduced models are computed at different periods of time. Further, the sensor

placement using dynamic reduced order is developed.

Next, the framework for the state estimation of the large-scale field using the
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advanced optimization-based moving horizon estimation (MHE) is developed. The

trajectory-based unsupervised machine learning method is proposed for adaptive

model reduction of very large agricultural fields. Further, the algorithm of the exist-

ing MHE is modified to handle the adaptive reduced model. The proposed approach

is applied to estimate the states of a real-agricultural field located in Lethbridge,

Canada.

Afterward, we develop an optimization-based closed-loop scheduler for large agri-

cultural fields to provide optimal irrigation time and amount. The structure-preserving

model reduction is used to decrease the dimension of the three-dimensional model.

The scheduler has an objective similar to the economic zone MPC. In addition to

that, time is also a decision variable to the optimization problem. The final objective

is to maximize the yield while minimizing the water consumption and maximizing

the time between the irrigation events.

Further, the algorithm for surface soil moisture estimation using the thermal and

optical remote sensing method is developed. The machine learning based Long Short-

Term Memory (LSTM) model is used to estimate the surface soil moisture. Due to

the time-varying nature of the agro-hydrological model, the LSTM model is more

preferred than the static neural network model. The LSTM based model is trained

to obtain the surface soil moisture from the remote sensing images and the weather

conditions. The developed method is applied to a real-agricultural farm located in

Lethbridge, Canada using the experimental data collected in summer 2019.

In this thesis, we provide the details of the study area and experimental data

collection procedure for experiments conducted in summer 2019 and 2020 at an agri-

cultural field and a golf club.

iii



Preface

The materials presented in this thesis are part of the research project under the

supervision of Dr. Jinfeng Liu, and is funded by Alberta Innovates Technology Futures

(AITF) and Natural Sciences and Engineering Research Council (NSERC) of Canada.

Chapter 3 of this thesis is a revised version of Soumya R. Sahoo, Xunyuan Yi, Jin-

feng Liu, Optimal Sensor Placement for Agro-hydrological Systems, AIChE, 73:180-

192, 2019.

Chapter 4 of this thesis is a revised version of Soumya R. Sahoo, Xunyuan Yin,

Jinfeng Liu, Sirish L Shah, Dynamic Model Reduction and Optimal Sensor Place-

ment for Agro-hydrological Systems, 21st IFAC World Congress, 53(2), 11669-11674,

Berlin, Germany, 2020

Chapter 5 has been submitted as: Soumya R. Sahoo and Jinfeng Liu, Adaptive

Model Reduction and State Estimation of Agro-hydrological Systems, Computers and

Electronics in Agriculture (minor revision). A short version has been submitted as

Soumya R. Sahoo and Jinfeng Liu, Adaptive Model Reduction and State Estimation

of Agro-hydrological Systems, American Control Conference, Atlanta, GA, 2022.

Chapter 6 has been submitted as: Soumya R. Sahoo, Bernard Ageyaman, Sarupa

Debnath, Jinfeng Liu, Knowledge-based Optimal Irrigation Scheduling of Agro hydro-

logical Systems, Sustainability, 14(3), 1304, 2022. A short version has been submitted

as Soumya R. Sahoo, Bernard Ageyaman, Sarupa Debnath, Jinfeng Liu, Knowledge-

based Optimal Irrigation Scheduling of Three-dimensional Agro-hydrological Systems,

IFAC Symposium on Dynamics and Control of Process Systems, including Biosys-

tems, Busan, Republic of Korea, 2022.

iv



Acknowledgements

First, I would like to express my profound gratitude to my supervisor Professor Jinfeng

Liu for providing me with excellent guidance throughout my Ph.D. journey. His

devotion towards research, patience, and enthusiasm made him my role model. His

constant wholehearted support and encouragement significantly impacted boosting

my self-confidence and building a path towards the success of my career goals. He is

definitely the best supervisor I could have ever asked for. This thesis would not have

been possible without his support and guidance.

I want to gratefully acknowledge Professor Stevan Dubljevic, Professor Zukui Li,

Professor Qing Zhao, Professor Xiang Li for serving on my doctoral examination and

Professor Sirish L Shah for helping me in my thesis work.

I would also like to thank my PSACE group members who have helped and sup-

ported me during my Ph.D. journey, including Sarupa Debnath, Song Bo, Bernard

Agyeman, Xunyuan Yin, Benjamin Decardi-Nelson, Jannatun Nahar, Su Liu, Erfan

Orouskhani, Yi Zhang, Jianbang Liu, Aristarchus Gnanasekar, Rui Nian, An Zhang,

Nirwair Bajwa, Nirav Raiyani, Zhiyinan Huang and Guoyang Yan. I would like to

thank my friends and family in Edmonton who supported in my personal life includ-

ing Dr J.P Das, Gita Das, Shammy Raj, Shilpi Rathi, Vineet Rathi, Anuja Tripathi,

Aishwarya Rath.

I gratefully acknowledge the financial support from the Natural Sciences and En-

gineering Research Council of Canada (NSERC) and Alberta Innovative Technology

Futures (AITF).

I am incredibly thankful to my father, Mayadhar Sahoo, my brother Manas Ranjan

Sahoo and my sister-in-law Annapurna Sahoo for their constant support in my life.

Last but not least, this thesis is dedicated to my mother, Late. Sanjukta Sahoo.

I owe everything to you.

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Modeling of agro-hydrological systems . . . . . . . . . . . . . 5

1.3.2 State estimation and sensor placement . . . . . . . . . . . . . 7

1.3.3 Recent developments of closed-loop irrigation system . . . . . 8

1.3.4 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5 Remote sensing techniques for agriculture . . . . . . . . . . . 12

1.4 Contributions and thesis outline . . . . . . . . . . . . . . . . . . . . . 15

2 Preliminaries on modeling of agro-hydrological systems 18

2.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Numerical method and discretization . . . . . . . . . . . . . . . . . . 21

2.3 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . . . . . . 27

2.4 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Structural observability . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Maximum multiplicity theory . . . . . . . . . . . . . . . . . . 29

2.5 Degree of observability . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Cluster set and projection matrix . . . . . . . . . . . . . . . . . . . . 30

3 Optimal sensor placement 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Proposed sensor placement procedure . . . . . . . . . . . . . . . . . . 33

3.2.1 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



3.2.2 Minimum number of sensors . . . . . . . . . . . . . . . . . . . 36

3.2.3 Sensor placement based on degree of observability . . . . . . . 37

3.2.4 State estimation based on reduced model . . . . . . . . . . . . 38

3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Scenario 1: a small field with simple soil arrangement . . . . . 39

3.3.2 Scenario 2: the small field with a different soil arrangement . . 45

3.3.3 Scenario 3: a larger field . . . . . . . . . . . . . . . . . . . . . 53

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Dynamic model reduction and optimal sensor placement 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Proposed sensor placement procedure . . . . . . . . . . . . . . . . . . 59

4.2.1 Dynamic model reduction . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Minimum number of sensors . . . . . . . . . . . . . . . . . . . 62

4.2.3 Optimal sensor placement . . . . . . . . . . . . . . . . . . . . 63

4.2.4 State estimation based on reduced model . . . . . . . . . . . . 64

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Minimum number of sensors selection . . . . . . . . . . . . . . 68

4.3.3 Sensor placement . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Adaptive model reduction and state estimation using moving hori-

zon estimation 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Proposed adaptive model reduction . . . . . . . . . . . . . . . . . . . 75

5.3.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Adaptive moving horizon estimation . . . . . . . . . . . . . . . . . . 82

5.5 Application to a small field: simulation case . . . . . . . . . . . . . . 84

vii



5.5.1 Performance comparison of proposed adaptive MHE and origi-

nal MHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.2 Robustness of adaptive MHE . . . . . . . . . . . . . . . . . . 89

5.6 Application to a real-agricultural field . . . . . . . . . . . . . . . . . . 89

5.6.1 Results: adaptive model reduction . . . . . . . . . . . . . . . . 91

5.6.2 Result: adaptive MHE . . . . . . . . . . . . . . . . . . . . . . 92

5.6.3 Scenario 2: noisy case . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Knowledge based optimal irrigation scheduling 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Proposed closed-loop scheduling . . . . . . . . . . . . . . . . . . . . . 102

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Results: model reduction . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Result: scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Surface soil moisture remote sensing through Long Short-TermMem-

ory (LSTM) 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Normalized Difference Vegetation Index (NDVI) . . . . . . . . 118

7.2.2 Temperature Vegetation Dryness Index (TVDI) . . . . . . . . 119

7.2.3 LSTM modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Convert thermal images to radiometric thermal images . . . . 121

7.3.2 Image registration and image stitching . . . . . . . . . . . . . 123

7.3.3 Identify the sensor locations . . . . . . . . . . . . . . . . . . . 125

7.4 Proposed soil moisture estimation method . . . . . . . . . . . . . . . 127

7.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 128

viii



7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Conclusions and future work 133

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2.1 Computationally efficient 3D model development . . . . . . . 134

8.2.2 Machine learning-based state estimation . . . . . . . . . . . . 135

8.2.3 Scheduler and controller design using reinforcement learning (RL)135

8.2.4 Efficient soil moisture estimation using different remote sensing

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2.5 Distributed state and controller design . . . . . . . . . . . . . 135

Appendix A Remote sensing data collection procedure using drone 149

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.3 Soil texture analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.4 Remote sensing image collection using drone . . . . . . . . . . . . . . 150

A.4.1 Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.5 Soil moisture data collection . . . . . . . . . . . . . . . . . . . . . . . 154

A.6 Data collection procedure . . . . . . . . . . . . . . . . . . . . . . . . 157

Appendix B Remote sensing methods by mounting cameras on mower158

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2 Equipment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

ix



List of Tables

3.1 Soil properties of four different types of soils . . . . . . . . . . . . . . 39

5.1 The parameters of loamy soil . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Computational speed comparison of original MHE and adaptive MHE 88

6.1 Soil properties of three different types of soil . . . . . . . . . . . . . . 106

x



List of Figures

1.1 World wide water consumption statistics [1] . . . . . . . . . . . . . . 1

1.2 Projected water scarcity in 2030 [2] . . . . . . . . . . . . . . . . . . . 2

1.3 Schematic of the agro-hydrological system . . . . . . . . . . . . . . . 3

1.4 Current open-loop irrigation practice . . . . . . . . . . . . . . . . . . 4

1.5 A schematic of the closed-loop irrigation system . . . . . . . . . . . . 5

2.1 Water stress factor �(h) graph . . . . . . . . . . . . . . . . . . . . . . 20

2.2 A schematic diagram of the radial discretization . . . . . . . . . . . . 23

2.3 A schematic diagram of the azimuthal discretization . . . . . . . . . . 24

2.4 A schematic diagram of the axial discretization . . . . . . . . . . . . 25

2.5 Structural observability . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Flow diagram of the proposed sensor placement procedure . . . . . . 33

3.2 Graph representation of the example system with edge weights (�10�4) 37

3.3 Graph representation of the system considered in Scenario 1. Four

different types of soil are considered: silt loam (red), loam (blue),

sandy loam (black) and sandy clay loam (green) . . . . . . . . . . . . 41

3.4 Reduced models of the system in Scenario 1 based on the proposed

approach. (a) reduced model with 40 states; (b) reduced model with

20 states. In the plots, the four different types of soil are indicated

as follows: silt loam (red), loam (blue), sandy loam (black) and sandy

clay loam (green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Values of E for reduced model with different orders for Scenario 1 . . 43

xi



3.6 Trajectories of some states of the original system (red solid line), the

reduced model of order 40 (black dotted line), the reduced model of

order 20 (green dash-dot line) and the reduced model of order 10 (blue

dashed line) for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Modal degree of observability of the original system and the reduced

model of order 20 for Scenario 1 when the sensor is placed at different

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Graph representation of the system considered in Scenario 2. A differ-

ent arrangement of the four different types of soil (silt loam (red), loam

(blue), sandy loam (black) and sandy clay loam (green)) is considered 46

3.9 Reduced models of the system considered in Scenario 2. (a) reduced

model with 60 states; (b) reduced model with 40 states; (c) reduced

model with 20 states. In the plots, the four different types of soil are

indicated as follows: silt loam (red), loam (blue), sandy loam (black)

and sandy clay loam (green) . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Values of E for reduced model with different orders for Scenario 2 . . 49

3.11 Trajectories of a few states of original model (red solid line), the re-

duced model of order 40 (black dotted line), the reduced model of

order 20 (green dash-dot line) and the reduced model of order 10 (blue

dashed line) for Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Modal degree of observability of the original system and the reduced

model of order 40 for Scenario 2 when the sensor is placed at different

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.13 Reduced models of the system considered in Scenario 2 with parameter

uncertainty. (a) reduced model with 60 states; (b) reduced model with

40 states; (c) reduced model with 20 states. In the plots, the four

different types of soil are indicated as follows: silt loam (red), loam

(blue), sandy loam (black) and sandy clay loam (green) . . . . . . . . 51

3.14 Trajectories of a few states of original model (red solid line), the re-

duced model of order 40 (black dotted line), the reduced model of

order 20 (green dash-dot line) and the reduced model of order 10 (blue

dashed line) for Scenario 2 with parameter uncertainty . . . . . . . . 52

xii



3.15 Modal degree of observability of the original system and the reduced

model of order 40 for Scenario 2 with parameter uncertainty when the

sensor is placed at different nodes . . . . . . . . . . . . . . . . . . . . 53

3.16 System considered in Scenario 3. Four different types of soil are con-

sidered: silt loam (red), loam (blue), sandy loam (black) and sandy

clay loam (green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.17 Reduced model of order 40 for the system considered in Scenario 3. In

the plot, the four different types of soil are indicated as follows: silt

loam (red), loam (blue), sandy loam (black) and sandy clay loam (green) 54

3.18 Trajectories of some of the states of original model (red solid line)

and the corresponding states of the reduced model of order 40 (black

dashed line) for Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . 55

3.19 Modal degree of observability of the reduced model of order 40 for

Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.20 Trajectories of the actual states (red solid line), the state estimates

with sensor placed at x1165 (blue dashed line) and the sensor placed at

x7985 (cyan dash-dot line) . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Flow diagram of the proposed sensor placement procedure . . . . . . 59

4.2 Graph representation of the system. A different arrangement of the

four different types of soil (silt loam (red), loam (blue), sandy loam

(black) and sandy clay loam (green)) is considered . . . . . . . . . . . 66

4.3 Schematic of input and soil types distribution . . . . . . . . . . . . . 66

4.4 Input values of four different sprinklers . . . . . . . . . . . . . . . . . 67

4.5 Trajectories of the actual states (red solid line), the dynamic reduced

model of order 80 (blue dashed line), the reduced model based on final

time step state trajectory of order 80 (black dash-dot line) . . . . . . 68

4.6 Comparison of average error of all states for each time step for dynamic

model reduction (blue dashed line) and static model reduction (red

solid line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Modal degree of observability of the original system at different oper-

ating points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiii



4.8 Average Modal degree of observability of the original system when the

sensor is placed at different nodes . . . . . . . . . . . . . . . . . . . . 70

4.9 Trajectories of the actual states (red solid line), the state estimates

with sensor placed at x25 (blue dashed line) and the sensor placed at

x609 (black dash-dot line) . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 Comparison of average error of all states for each time step for sensor

placed at x25 (blue dashed line) and the sensor placed at x609 (red solid

line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Motivational example for adaptive model reduction . . . . . . . . . . 76

5.2 Steps to calculate adaptive reduced model . . . . . . . . . . . . . . . 77

5.3 Illustration of adaptive model reduction . . . . . . . . . . . . . . . . . 78

5.4 Changing boundary from one reduced model to another . . . . . . . . 81

5.5 Irrigation amount for the small field . . . . . . . . . . . . . . . . . . . 87

5.6 Number of clusters for the small field . . . . . . . . . . . . . . . . . . 87

5.7 Selected state trajectories of the actual states (red solid line), estimated

states using adaptive MHE (blue dotted line) and estimated states

using original MHE (green dashed line) . . . . . . . . . . . . . . . . . 88

5.8 Mean square error of the original MHE (red solid line) and the adaptive

MHE (blue solid line) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9 Mean square error of adaptive MHE staring from different initial guesses 89

5.10 a) Demo farm in Lethbridge, (b) A schematic diagram of the demo

farm model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.11 Surface soil moisture initial condition . . . . . . . . . . . . . . . . . . 91

5.12 Number of clusters for adaptive model reduction . . . . . . . . . . . . 92

5.13 Selected state trajectories of the actual states (red solid line), reduced

states (blue dotted line) . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.14 Trajectory mean square error of actual system and reduced system . . 94

5.15 Number of clusters for scenario 1 . . . . . . . . . . . . . . . . . . . . 94

5.16 Selected state trajectories of the actual states (red solid line), estimated

states (blue dotted line) for scenario 1 . . . . . . . . . . . . . . . . . 95

5.17 Trajectory mean square error of adaptive MHE for scenario 1 . . . . . 95

xiv



5.18 (a) Surface soil moisture map for actual states, estimated states and

absolute estimation error at time t = 1 hr (Left to right) (b) Sur-

face soil moisture map for actual states, estimated states and absolute

estimation error at time t = 24 hr (Left to right) (scenario 1) . . . . . 96

5.19 (a) Bottom soil moisture map for actual states, estimated states and

absolute estimation error at time t = 1 hr (Left to right) (b) Bot-

tom soil moisture map for actual states, estimated states and absolute

estimation error at time t = 24 hr (Left to right) (scenario 1) . . . . . 97

5.20 Number of clusters for scenario 2 . . . . . . . . . . . . . . . . . . . . 97

5.21 Trajectory mean square error for adaptive MHE for scenario 2 . . . . 97

5.22 Selected state trajectories of the actual states (red solid line), estimated

states (blue dotted line) for scenario 2 . . . . . . . . . . . . . . . . . 98

5.23 (a) Surface soil moisture map for actual states, estimated states and

absolute estimation error at time t = 1 hr (Left to right) (b) Sur-

face soil moisture map for actual states, estimated states and absolute

estimation error at time t = 24 hr (Left to right) (scenario 2) . . . . . 98

5.24 (a) Bottom soil moisture map for actual states, estimated states and

absolute estimation error at time t = 1 hr (Left to right) (b) Bot-

tom soil moisture map for actual states, estimated states and absolute

estimation error at time t = 24 hr (Left to right) (scenario 2) . . . . . 99

6.1 Motivation of optimizing both input and time together (irr represents

the irrigation amount and the units are in �10�6) . . . . . . . . . . . 104

6.2 Soil parameter �s for the field . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Values of MSE with different reduced order . . . . . . . . . . . . . . . 107

6.4 Selected state trajectories of the actual system and reduced system for

four different inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 (a) Selected state trajectories under the proposed zone scheduler design

for scenario 1; (b) Irrigation amount for 5 different sprinklers obtained

from proposed zone scheduler . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Pressure head values for root zone layer . . . . . . . . . . . . . . . . . 110

xv



6.7 (a) Selected state trajectories for three cases (different initial condi-

tions) (scenario 1); (b) Input trajectories for three cases . . . . . . . . 110

6.8 (a) Selected state trajectories at 3rd layer under the proposed zone

scheduler design for scenario 2; (b) Irrigation amount for 5 different

sprinklers obtained from proposed zone scheduler . . . . . . . . . . . 112

6.9 Pressure head values of depth 10cm for scenario 2 . . . . . . . . . . . 112

6.10 (a) Accurate rain forecast and long term forecast prediction; (b) Ac-

curate ET forecast and long-term ET forecast, (c) Crop coefficient for

total growing season for lettuce . . . . . . . . . . . . . . . . . . . . . 114

6.11 (a) Selected state trajectories for all layers under the proposed zone

scheduler design for scenario 3; (b) Irrigation amount for 5 different

sprinklers obtained from proposed scheduler for scenario 3 . . . . . . 115

7.1 NDVI analysis of healthy and unhealthy plant . . . . . . . . . . . . . 118

7.2 Ts-NDVI triangle feature space . . . . . . . . . . . . . . . . . . . . . 119

7.3 Information flow in LSTM units . . . . . . . . . . . . . . . . . . . . . 121

7.4 Extracted thermal images from video at different time . . . . . . . . . 122

7.5 Tentative matches from between two images . . . . . . . . . . . . . . 124

7.6 Selected inliner matches . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 One pair image mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.8 (a) Stitched image of one column; (b) Completed stitched image . . . 125

7.9 Identified sensor locations on NIR image of 31st July, 2019 . . . . . . 126

7.10 Flow diagram of proposed soil moisture estimation . . . . . . . . . . . 127

7.11 Performance plot of Mean Squared Error (MSE) with the epoch for

training and validation . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.12 Training of measured and predicted soil moisture for some selected

sensor positions f2,7,13,18g . . . . . . . . . . . . . . . . . . . . . . . 129

7.13 Validation of measured and predicted soil moisture for some selected

sensor positions f5,6,16,19g . . . . . . . . . . . . . . . . . . . . . . . 130

7.14 Measured and predicted soil moisture scatter plot . . . . . . . . . . . 130

7.15 Surface soil moisture predicted by LSTM for the date 11th July, 2019,

19th July, 2019, 26th July, 2019, 30th July, 2019 . . . . . . . . . . . . . 131

xvi



A.1 a) Demo farm in Lethbridge, (b) Satellite view of the demo farm . . . 150

A.2 Soil sample collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3 (a) soil parameters (�R; KS; �S) from top to 25 cm depth, (b) soil pa-

rameters (n; �; �S) from 25 cm to 50 cm depth . . . . . . . . . . . . . 151

A.4 a) DJI Mavic 2 Enterprise Dual, (b) AgroCam . . . . . . . . . . . . . 152

A.5 Video taking procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.6 a) Watermark sensor, b) Hydrago sensor . . . . . . . . . . . . . . . . 155

A.7 a) CR-800 data logger, b) Multiplexer . . . . . . . . . . . . . . . . . 156

A.8 Data logger, Multiplexer, Solar panel and Sensors . . . . . . . . . . . 156

A.9 a) Sensor positions, b) Field layout . . . . . . . . . . . . . . . . . . . 157

B.1 a) Lepton thermal camera, b) Arducam PTZ camera, c) GPS module 159

B.2 Cameras mounted on mower . . . . . . . . . . . . . . . . . . . . . . . 159

B.3 Path of mower at the Royal Mayfair Golf Club . . . . . . . . . . . . . 160

B.4 a) Surface temperature, b) Surface soil moisture . . . . . . . . . . . . 160

xvii



Chapter 1

Introduction

1.1 Motivation

Freshwater scarcity is one of the most significant global risks due to population

growth, climate change, and the increase in pollution [3, 4]. From the total amount

of freshwater, around 70% is used in agriculture, 20% is used in industry, and 10% is

used for domestic purposes [1] (Figure 1.1).

Figure 1.1: World wide water consumption statistics [1]

As can be seen, the agriculture sector requires a large portion of freshwater, and

the demand is indeed increasing. One of the biggest reasons for the increase in

demand is population growth. The global population is expected to be nine billion

by the year 2050, and the food demand is also expected to be increased by 70% [5].
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Figure 1.2: Projected water scarcity in 2030 [2]

About 40% of the world’s food comes from irrigated agriculture. To match the food

demand, the water required for irrigation has to increase by 11% [5]. In the present

situation, three billion people live in a chronic water shortage area [6]. Figure 1.2

shows the water stress area projected in 2030, indicating most of the world population

is going to face the water scarcity. Climate change is also one of the biggest factors

in water management in agriculture. Due to global warming, the temperature starts

to increase, which results in more evaporation from the land and sea, which makes

less rainfall in the semi-arid and mid-latitude area [5]. In the irrigation practice,

the water-use efficiency is around 50% to 60% due to poor irrigation strategy [7].

Furthermore, irrigation has a direct impact on the greenhouse gas emissions (GHG)

[8] due to electricity usage. Previous studies have shown a huge amount of GHG

release due to irrigation. In the US, the pumping requires around 23% of total farm

energy [8]. Thus an important step towards managing the water crisis and to reduce

GHG is to increase the water-use efficiency.
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Figure 1.3: Schematic of the agro-hydrological system

1.2 Background

The hydrological cycle among soil, water, atmosphere, and the crop is characterized

by agro-hydrological systems. A simple schematic of the agro-hydrological system is

shown in Figure 1.3. In the agro-hydrological cycle, inlet water transportation utilizes

precipitation, irrigation, and outflows take place using evaporation, transpiration,

root-water extraction, runoff, and drainage. The precipitation and irrigation water

enters the soil depending on the soil saturation condition. If the soil is unsaturated,

the water infiltrates toward the bottom, but if the soil is already saturated, the water

infiltration rate starts to decrease, and ponding occurs. The runoff happens after a

certain threshold of ponding. Root water extraction happens from the root of the

crop, which acts as a water sink. The evaporation and transpiration occur from the

soil and the crop canopy.

The traditional irrigation is based on the uniform supply of water which ignores

the spatial and temporal variability which often causes the over or under irrigation [9].

Different types of control techniques have been implemented for irrigation manage-
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